复旦大学 2025 年硕士研究生招生考试自命题科目考试大纲

科目代码 752 科目名称 药学基础

一、考试内容范围

一、生物化学(药学基础)考试纲要

1、蛋白质的化学

蛋白质的化学组成,蛋白质的分子组成,一级结构与空间构象,蛋白质结构与功能的关系,蛋白质的性质,蛋白质的纯度鉴定和含量测定。

2、核酸的化学

核酸的分子组成与结构, DNA 的分子结构, RNA 的种类与结构, 核酸的理化性质, 核酸的纯度检测。

3、酶学

酶的生物学意义,酶的作用特点及作用机理,酶的化学本质与结构,酶促反应特点及影响因素,酶的结构与功能的关系,酶的作用机理,米氏方程及米氏常数,酶的抑制剂的类型、特点及与药物开发的关系,寡聚酶,同工酶,诱导酶,调节酶,酶活力及比活性。

4、生物氧化

生物氧化的概念与特点,呼吸链的组成及排列顺序,ATP 的生成与利用,氧化磷酸化。

5、糖代谢

多糖的分类及理化性质,糖类在药物研发中的应用;糖的分解代谢,糖原合成与分解,糖异生,所有代谢途径中的关键步骤和关键酶、生理意义及调节,血糖的来源、去路及其调节。

6、脂类代谢

脂类的概念、在体内的消化吸收及运输,载脂蛋白与脂蛋白的概念、分类及 代谢特点;脂肪的分解与合成代谢及其调节,酮体的生成与利用,类脂的代谢,脂类代谢的调节、紊乱及在疾病与药物开发中的应用。

7、蛋白质的分解代谢

蛋白质的营养,蛋白质的消化、吸收和腐败,氨基酸的一般代谢(脱氨,转 氨,脱羧,氨的代谢,尿素生成,α-酮酸的代谢),个别氨基酸的代谢。

8、核酸与核苷酸代谢

核酸的分解代谢,核苷酸的生物合成。

9、代谢与代谢调控总论

新陈代谢的概念,物质代谢的相互关系;细胞与酶水平的代谢调控,方式与特点;代谢调节在药物开发中的应用。

10、基因与基因组

基因与基因组的概念、分类,基因结构与功能,原核生物与真核生物基因组的组成特点,人类基因组计划及相关延伸概念。

11、DNA 的复制、损伤与修复

DNA 复制的一般特征,复制的酶学及复制过程,特殊类型的复制。DNA 损伤类型、修复系统,以及在疾病与药物研发中的应用。

12、转录及其调控

原核生物转录, 真核生物转录, 转录调控, 转录与药物。

13、翻译及其调控

蛋白质生物合成,蛋白质合成与药物,蛋白质合成后的折叠与加工,蛋白质的转运与定位,合成的调控。

14、细胞信号转导基础

信号转导的概念、信号分子与受体,主要信号转导途径,信号转导特性,信号转导与分子靶向药物。

15、常用分子生物学技术与药物组学新概念

分子杂交技术,目的基因制备技术,基因敲除技术,RNA干扰技术,

Crispr/Cas9 系统介导的基因编辑技术。药物基因组学的概念,研究内容,临床意义等,药物转录组学,药物蛋白质组学。

二、无机化学(药学基础)考试纲要

基本章节:溶液、原子结构、分子结构、沉淀溶解平衡、酸碱平衡、氧化还原、配位化合物、s 区元素、d 区、ds 区和 f 区元素、p 区元素。

参考用书:

《无机化学》,第三版,许善锦主编,2000年,人民卫生出版社;张天蓝主编《无机化学》,第六版,张天蓝主编,人民卫生出版社,2011年7月人民卫生出版社。

考试纲要:

1、溶液

溶液浓度、稀溶液的依数性。

2、化学反应的方向

化学热力学反应的一些基本概念。

3、化学反应速率

化学反应速率理论,影响化学反应速率的因素。

4、化学平衡

平衡常数,影响化学平衡的因素。

5、酸碱平衡与沉淀溶解平衡

酸碱理论,弱酸弱碱电离平衡,缓冲溶液,溶度积原理,难溶电解质的沉淀溶解平衡。

6、氧化还原

氧化还原平衡, 电池的电动势和电极电势, 影响因素。

7、原子结构

原子模型,多电子原子的结构,电子层结构与周期表,元素基本性质的周期性。

8、分子结构

离子键,共价键的形成与特点,原子轨道杂化理论,分子的偶极距与极性, 离子极化。

9、配位化合物

配位键的价键理论,配位平衡常数,配位平衡的移动及影响配合物稳定性的因素。

10、Ss 区元素

碱金属和碱土金属的基本性质, 重要化合物, 离子鉴定。

11、d区、ds区和f区元素

过渡元素的通性,铬、锰、铁、铂、铜、锌、汞的性质,重要化合物,离子鉴定,生物毒性。

12、p 区元素

卤素,氧、硫和硒,氮和磷,碳和硅,铝砷分族,相应的重要化合物,离子 鉴定,生物效应。

三、有机化学(药学基础)考试纲要

参考用书:

《基础有机化学》(上、下册),第三版,邢其毅等主编,2005年,高等教育出版社;《有机化学》,第9版,陆涛主编,2023年,人民卫生出版社。考试纲要:

掌握有机化学必要的结构和反应基础理论(如价键理论、酸碱理论和杂化轨道理论)、基本概念和基本技能;掌握各官能团特征光谱知识,熟悉不同官能团有机化合物的鉴定、分离方法和技术;熟悉各类有机化合物的结构、命名、理化性质、常规反应(包括人名反应)、制备、反应机理和立体化学知识;运用有机化学基本知识进行有机化合物合成路线的设计。具体如下:1、烷烃和环烷烃及自由基取代反应

掌握: 烷烃的构象及表示方法; 自由基的结构和相对稳定性; 环烷烃的张力; 环己烷的构象(船式和椅式; 竖键和横键); 小环烷烃的化学特性及反应。

2、立体化学

掌握:对映异构现象;对映异构体和非对映异构体;手性碳和手性分子;旋 光性和有机化合物的比旋光;手性碳原子的构型;外消旋体和内消旋体;立 体结构的表达法。

3、卤代烃和亲核取代反应

掌握: 卤代烃的亲核取代反应; SN1 和 SN2 反应机理,反应的立体化学; E1 和 E2 反应机理,消除反应的取向;正碳离子的相对稳定性;影响反应机理的因素。

4、醇和醚

掌握: 醇的制备(亲核取代、硼氢化氧化、羟汞化还原); 醇的酸性、碱性和 亲核性; 醇的亲核取代和消除反应; 醇的氧化反应及邻二醇的化学性质; 醚 的制备(Williamson 合成法)及性质; 1,2-环氧化合物的开环反应; 硫醇及 硫醚的性质。

5、烯烃

掌握:烯烃的结构和几何异构;烯烃的相对稳定性;烯烃的亲电加成反应和机理;烯烃的亲电加成取向(马氏规则);烯烃和溴化氢的反马氏加成;烯烃的氧化反应;烯烃烯丙位的卤代。

6、炔烃和共轭双烯

掌握: 炔烃的结构和加成反应; 炔烃的酸性; 末端炔烃的反应; 共轭二烯的结构和稳定性; 共轭二烯的亲电加成反应; 动力学和热力学控制, 共轭加成; Diels-Alder 反应; 烯丙型卤代烃化学行为; 共振论的一般概念和共振结构的写法, 共振结构贡献大小; 共轭效应的概念。

7、芳烃

掌握: 芳香族亲电取代反应及其机理; 取代基的定位效应(取代基对反应活性和对反应取向的影响,取代基的分类); 芳香性。

8、羰基化合物(醛和酮)

掌握:醛酮的亲核加成反应和加成的立体化学(影响因素);羰基 氢的酸性和卤代反应、卤仿反应;缩醛(酮)的形成和羰基保护;羟醛缩合(包括Claisen-Schmidt,分子内羟醛缩合反应); Cannizzaro 反应;醛酮的还原和氧化;Wittig 反应;Darzen 反应;Benzoin 缩合;Michael 加成和 Robinson 关环;D-A 反应;醛酮化合物的制备; -不饱和羰基化合物的化学反应行为。

9、酚和醌

掌握: 酚的酸性; 酚的制备; 苯酚及其衍生物的反应(成醚反应和 Claisen 重排、成酯反应和 Fries 重排,亲电取代反应, Reimer-Tiemann 反应、Kolbe-R.Schmitt 反应); 对苯醌的反应。

10、羧酸和取代羧酸

掌握: 羧酸的结构和酸性; 羧基中羟基的取代反应; 羧酸 位的反应; 脱羧和二元羧酸热解反应; 羧酸的制备(包括: Perkin 反应、Knoevenagel 反应); 取代羧酸化学性质和反应(包括 Reformasky 反应)。

11、羧酸衍生物

掌握: 羧酸衍生物的相互转化和制备; 羧酸衍生物的结构和活性次序及其与各种亲核试剂的作用; 羧酸衍生物的还原; 酰胺化合物的酸碱性和化学反应 (Hofmann 降解反应); 碳酸和原酸衍生物化学行为。

12、碳负离子的反应

-氢的酸性、互变异构及化学反应如: Perkin 反应; Knoevenagel 反应, Darzen 反应及酯的缩合反应和 Claisen 缩合反应、混合酯缩合、Dieckmann 缩合反应; 乙酰乙酸乙酯化学性质和应用; 丙二酸二乙酯在合成上应用; 烯胺的烷化和酰化反应行为和机理。

13、有机含氮化合物

掌握: 芳香硝基化合物性质和反应; 胺的结构; 胺的碱性和亲核性; 芳香胺的亲电取代反应; 芳香亲核取代反应; 季铵盐和相转移催化; 胺的制备(包括 Gabriel 合成法, Mannich 反应); 季铵碱和 Hofmann 消除; 叔胺的氧化; 重氮化合物化学性质和应用; 重氮甲烷的性质; 卡宾和苯炔的结构及化学行为。

14、杂环化合物

掌握: 芳香族杂环化合物类型; 含氮杂环碱性; 五元杂环的性质(呋喃、吡咯、噻吩的性质及主要亲电取代反应); 吡啶的化学性质(亲电和亲核性); Skraup 喹啉合成法; 含两个氮原子六元和含两个杂原子五元杂环化学性质。15、糖类

掌握: 单糖的还原性和变旋性; 单糖的立体构型和构象; 糖类的差向异构化; 从开环单糖画出半缩醛环的构型。

16、周环反应

掌握:周环反应类型;电环化反应及立体选择性;环加成反应。

四、物理化学(药学基础)考试纲要

参考用书:

《物理化学》(第九版),崔黎丽主编,人民卫生出版社,2022年。《物理化学实验指导》,陈刚主编,复旦大学出版社,2024年。 考试纲要:

1、热力学第一定律

热力学基本概念, 热力学第一定律, 可逆过程与体积功, 焓和热容, 热力学 第一定律应用, 热化学基本概念, 化学反应热效应计算。

2、热力学第二定律

自发过程的特征,热力学第二定律,卡诺循环,卡诺定理,熵和熵变的计算,熵的物理意义,热力学第三定律及规定熵,吉布斯能和亥姆霍兹能,吉布斯自由能变化的计算,热力学函数间的关系,非平衡态热力学概念。

3、多组分系统热力学

各种浓度的定义和应用,偏摩尔量与化学势,多组分体系的化学势判据,稀溶液中的 Raoult 定律和 Henry 定律及应用,稀溶液依数性质,溶剂蒸气压降低,沸点升高,凝固点降低和渗透压的计算、稀溶液的分配定律和计算。

4、化学平衡

化学反应的平衡条件,化学反应平衡常数和等温方程,平衡常数的表示法, 平衡常数的测定和平衡转化率的计算,标准状态下反应的吉布斯能变化和化 合物的标准生成吉布斯能,温度对平衡常数的影响,压力等因素对平衡常数 的影响,反应的耦合。

5、相平衡

相律,单组分体系,完全互溶的双液体系,部分互溶和完全不互溶的双液体系,二组分固一液平衡体系,简单三组分体系。

6、电化学

电解质溶液的导电性质,电解质溶液的电导,电导测定的应用,强电解质溶液理论,原电池,电动势产生的机理和测定,可逆电池热力学,电极电势,电极的种类,电池的类型,电池电动势测定的应用,电极的极化和过电势。

7、动力学

反应速率的表示方法及其测定,基元反应与反应分子数,反应速率方程与反应级数,简单级数的反应,反应级数的确定,温度对反应速率的影响,典型的复杂反应,反应机理的确定,光化反应,溶液中的反应,催化反应,碰撞理论,过渡杰理论。

8、表面化学

表面吉布斯能和表面张力, 曲面的附加压力和蒸气压, 铺展与润湿, 溶液的 表面吸附, 不溶性表面膜, 表面活性剂, 气体在固体表面上的吸附, 溶液中 溶质在固体表面的吸附。

9、胶体化学和大分子溶液

分散系分类及其基本特性,溶胶的制备与净化,溶胶的动力性质,溶胶的光学性质,溶胶的电学性质,胶体的稳定性,乳状液、泡沫和气溶胶。大分子结构和摩尔质量,大分子的溶解特征和非理想性质,大分子溶液的渗透压和流变性质,大分子摩尔质量测定,大分子电解质,凝胶。

五、分析化学(药学基础)考试纲要

参考用书:

《分析化学》(第9版),主编: 邸欣,人民卫生出版社,2023年。 考试范围:第二章,第八章-第十八章 考试纲要:

- 1、误差和分析数据处理
- (1) 掌握误差产生的原因及减免方法,准确度和精密度的表示方法及两者之间的关系,有效数字位数的判断及其修约和计算规则,显著性检验的方法。
- (2) 熟悉偶然误差的正态分布; t 分布曲线; 可疑数据的取舍; 置信区间定义及表示方法。
- (3) 了解误差的传递规律; 相关分析和回归分析。
- 2、电位法和永停滴定法
- (1) 掌握指示电极和参比电极; pH 玻璃电极的结构、性能、测定原理及方法; 离子选择电极的选择性系数; 电位滴定法和永停滴定法的原理及确定终

点的方法。

- (2) 熟悉原电池和电解池; pH 玻璃电极和离子选择电极的响应机制、测量方法及误差。
- (3) 了解电化学分析法及其分类;常用术语。
- 3、光谱分析法概论
- (1)掌握光学分析法的分类和原理;波数(波长和频率)与光子能量间的换算;光谱分析仪器的基本构造。
- (2) 熟悉电磁波谱分区; 电磁辐射与物质相互作用的相关术语; 各种光学仪器的主要部件。
- (3) 了解光谱分析法的发展概况。
- 4、紫外-可见分光光度法
- (1)掌握紫外吸收光谱的特征,电子跃迁和吸收带类型、特点及影响因素; Lambert-Beer 定律;用于组分定量分析的各种方法。
- (2) 熟悉紫外-可见分光广光度计的基本部件、工作原理和光路类型;比色法的原理及显色反应条件选择;紫外-可见分光光度法定性及纯度检查的各种方法。
- (3) 了解紫外吸收光谱与有机化合物分子结构的关系。
- 5、荧光分析法
- (1) 掌握荧光分析法的基本原理; 分子荧光的发生过程; 定量分析方法。
- (2) 熟悉分子从激发态返回基态的各途径;分子结构与荧光的关系;影响荧光强度的因素。
- (3) 了解荧光分光光度计: 荧光分析的相关技术及其应用。
- 6、红外吸收光谱法
- (1)掌握红外吸收光谱法基本原理、产生条件,分子振动形式;基频峰分布及影响因素;特征峰;相关峰;各类有机化合物的典型光谱;红外光谱解析方法。
- (2) 熟悉分子振动能级和振动自由度; 吸收峰的位置和强度; 常用术语。
- (3) 了解傅里叶变换红外光谱仪的工作原理及性能指标; 样品的制备方法。

7、原子吸收分光光度法

- (1) 掌握原子吸收分光光度法的基本原理和定量分析方法。
- (2) 熟悉实验条件的选择及消除干扰的方法。
- (3) 了解原子吸收分光光度法的特点及吸收线变宽的主要原因。

8、核磁共振波谱法

- (1)掌握方法原理; 共振吸收条件; 化学位移及其影响因素; 自旋偶合和自旋分裂; n+1 规律; 一级图谱的解析。
- (2) 熟悉自旋系统及其命名原则;常见质子化学位移。
- (3) 了解碳谱及相关二维谱。

9、质谱法

- (1)掌握方法原理;分子离子峰的判断依据;不同离子类型在结构分析中的作用;质谱仪主要部件及工作原理;常见离子源和质量分析器及优缺点。
- (2) 熟悉质谱解析和综合波谱解析方法及一般步骤;常见阳离子的裂解类型及应用。
- (3) 了解质谱法的特点及其发展概况;。

10、色谱分析法概论

- (1) 掌握色谱法的有关概念和各种参数及计算公式; 塔板理论和速率理论。
- (2)熟悉色谱过程;四类基本类型色谱的分离机制、固定相和流动相和影响因素。
- (3) 了解色谱法的分类及色谱法的发展。

11、平面色谱法

- (1)掌握基本原理;比移值和相对比移值、分配系数和保留因子及相互关系。
- (2) 熟悉薄层板的种类: 薄层色谱操作步骤及因素: 定性、定量分析方法。
- (3) 了解各种类型色谱的操作方法: 薄层扫描法、高效薄层色谱法。

12、气相色谱法

- (1) 掌握 方法分类和仪器流程; 主要类型检测器的检测原理和特点; 定性、定量方法及适用范围。
- (2) 熟悉毛细管气相色谱法,气相色谱固定相和载气,分离条件的选择。

(3) 了解气相色谱和毛细管气相色谱的特点。

13、高效液相色谱法

- (1)掌握方法分类; 化学键合相的性质、特点和种类等; 流动相对色谱分离的影响; HPLC中的速率理论及其对选择实验条件的指导作用; 定性、定量分析方法。
- (2) 熟悉反相键合相色谱法原理及其分离条件的选择; 高效液相色谱仪的主要部件。
- (3) 了解离子色谱法、手性色谱法和亲和色谱法。

14、毛细管电泳法

- (1)掌握毛细管电泳法的基本理论和基本术语;毛细管区带电泳法、胶束电动毛细管色谱法和毛细管电色谱法的分离机制。
- (2) 熟悉评价分离效果的参数,影响电泳分离的主要因素,毛细管区带电泳 法和胶束电动毛细管色谱法的操作条件选择。
- (3)了解常用的毛细管电泳分离模式,毛细管电泳仪器的主要组成;毛细管电泳法在药物分析中的应用。

15、色谱-质谱联用技术

- (1)掌握电喷雾离子化和大气压化学离子化的工作原理;全扫描模式及总离子流色谱图、质量色谱图和质谱;选择离子监测和选择反应监测的特点及应用。
- (2) 熟悉飞行时间质量分析器;串联四极杆质量分析器;液相色谱-质谱联用法的基质效应及其解决方法。
- (3)了解气相色谱-质谱联用法和高效液相色谱-质谱联用法的特点;气相色谱-质谱联用仪的接口:谱库检索。

二、试卷结构

药学基础考试科目包括生物化学、无机化学、有机化学、物理化学和分析化学,考试时间为 3 小时,满分为 300 分,各科目分值各占 20%。考试题型:单选题、多选题、填空题、简答题。

三、参考书目					
主编	书名	出版社	出版时间	版次	备注
姚文兵	生物化学	人民卫生出版社	2022年	第9版	
查锡良、周春 燕、药立波	生物化学与 分子生物学	人民卫生出版社	2018年	第9版	
张景海	药学分子生 物学	人民卫生出版社	2024年	第6版	
张天蓝	无机化学	人民卫生出版社	2011年	第6版	
许善锦	无机化学	人民卫生出版社	2000年	第3版	
邢其毅	基础有机化学(上、下册)	高等教育出版社	2005年	第3版	
陆涛	有机化学	人民卫生出版社	2023年	第9版	
崔黎丽	物理化学	人民卫生出版社	2022年	第9版	
陈刚	物理化学实 验指导	复旦大学出版社	2024年		
邸欣	分析化学	人民卫生出版社	2023年	第9版	